quinta-feira, 30 de julho de 2009

Lisbon Statement on Hydrogen and Clean Energies *

  • It is undeniable that the present accumulated amount of knowledge in Science and Technology can influence all aspects of human life and at the same time interferes with our habitat, giving rise to drastic consequences for human health and quality of life.
  • The real danger for attaining irreversible climate changes, critical levels of pollution and certain disease thresholds are now clearly assumed by the main relevant institutions.
  • The choice between healthy and harmful habitats is not a scientific issue but a cultural one. When critical natural human needs are threaten by technology development, then new cultural choices and roadmaps are demanded.
  • Economical resources of the societies must be directed toward keeping human health at the best possible level. In this regard, the search for clean and friendly energy alternatives that mitigate warming and climate changes, must be successfully developed.
  • The ever-increasing demand for energy coupled with dwindling fossil fuel resources, and the security of supply, make the establishment of a clean and sustainable energy system a compelling need.
  • Hydrogen is a clean source of energy and does not contribute to the greenhouse effect, having the potential to replace the present fossil fuel resources.
  • Hydrogen, as a new energy vector and strongly connected with other renewable energy resources, introduces the need to deepen the knowledge in the Energy domain.
  • Furthermore, research in Hydrogen technology has reached a status of development already implemented at an experimental level in several countries.
  • Traditional organization of most universities is still not suitable for a fruitful cross linking among the several areas of knowledge related with the field of Energy. A more efficient interaction between universities and energy based industries must be sought.
  • Energy is in fact a priority area for teaching and research. Actually, Energy Engineering needs to be taught, starting at a graduation level and including several subjects which must not be imposed by pre-established corporative interests within university departments.
  • Technological challenges regarding largescale Hydrogen production from renewable sources, and efficiently storing Hydrogen on board fuel-cell electric vehicles, urgently demand for in-depth fundamental understanding.
  • The appealing market for the electric vehicles driven by fuel-cells comes just in time when people, aware of climate changes, demand a reduction of emissions in compliance with post-Kyoto commitments.
  • Even though from renewable origin, energy production contributes to carbon dioxide increase. So, there is a need to compute all the energetic costs taking into account efficiency and optimization.
  • It is of vital importance identifying the basic factors needed to start an effective process to protect human life and culture from the environment threats originated by fossil fuel based energy resources. It is necessary to endorse a truly international action towards the implementation of Hydrogen as an effective energy vector.

Considering that “it is now too late to be pessimistic”, our proposals are:

  1. Governments should try to boost directly or indirectly the implementation of a Hydrogen based Economy.
  2. Governments should make efforts to balance their trend in decreasing carbon dioxide emissions with the implementation of effective technological and scientific programmes to promote the creation of a real Hydrogen based energy network.
  3. Governments should foster university graduation and post-graduation courses in the field of Energy and promote experimental research in the field. Taking into account the multidisciplinary characteristics of the subject, and the traditional organization of universities in distinct departments, it is strongly recommended the creation of autonomous Departments of Energy, which should lead the above mentioned graduation and post-graduation curricula in interaction with the other traditional departments. This process is well inspired in what universities did in the recent past with the creation of some successful new departments, as for instance the Environment ones.
  4. The Governments policies regarding the implementation of the Hydrogen Economy should assure that in case it comes from hydrocarbon transformations giving rise to carbon dioxide emissions, these must be sequestrated for further uses, or injected into the subsoil.
  5. Governments should prepare legislation in order to assure that fuel production raw materials and energy production devices must be taxed accordingly to the amount of produced carbon dioxide and other greenhouse gases; for example, computing the tax from the electric energy equivalent price, taking into account the usual production in a thermoelectric power plant.
  6. These policies will significantly contribute to assure a trend to carbon-free energy technologies based on a vision of a truly competitive economy, enabling global development.
  7. Energy based industries and related technological research centres should be encouraged to work in collaboration with the new university Energy Departments already proposed.

Those who agree with the Lisbon Statement for Hydrogen and Clean Energies engage, in doing everything possible to contribute for dissemination of the ideas outlined in the present document.

*This statement was written in Lisbon (Portugal), on the 13th May 2009, by Carmen M. Rangel, César. A. Sequeira and Rui F. Lobo, in the sequence of the International Conference on Hydrogen, HYPOTHESIS VIII, and will be available on-line in order to be signed by scientists, institutions and all those who, in good faith, decide to join it. Download here the document and send it to lisbonstatement@gmail.com

quarta-feira, 29 de julho de 2009

ITM Power lança sistema energético a hidrogénio para habitações

A ITM Power lançou o protótipo «carbono zero», um sistema energético doméstico que armazena energia produzida a partir de painéis solares ou turbinas eólicas sob a forma de hidrogénio.

Assim, a energia pode ser usada quando for necessária para cozinhar, refrigerar, aquecimento de águas ou como electricidade (energia ou calor) conforme as necessidades das actuais habitações sem comprometer as emissões de carbono. O hidrogénio sob pressão pode, assim, através de uma célula de combustível fornecer a energia necessária, ou pode ser usado como gás e em substituição do gás natural, em sistemas de aquecimento.

De acordo com a ITM Power este sistema deverá custar entre $6,000 e $10,000. O próximo passo é testar o sistema da ITM numa habitação. Para tal, a empresa vai participar numa demonstração em duas habitações de South Shields, no Reino Unido. Estas serão abastecidas com hidrogénio para as cozinhas, ao mesmo tempo que o hidrogénio é utilizado como forma de armazenamento energético para as necessidades energéticas e caloríficas das habitação. O sucesso desta demonstração poderá ditar o futuro do novo sistema da ITM

sexta-feira, 24 de julho de 2009

Roadmap português do hidrogénio concluído até final de 2010

Até ao final do próximo ano, Portugal deverá contar com um roadmap para o hidrogénio, que apontará os impactes ambientais e económicos, bem como as oportunidades de negócio decorrentes da introdução do hidrogénio no mix energético nacional.

Em declarações ao AmbienteOnline, Campos Rodrigues, presidente da Associação Portuguesa para a Promoção do Hidrogénio (AP2H2), adiantou que está a ser preparado o plano de trabalho. O objectivo é que o trabalho possa arrancar em Outubro, de forma a que os primeiros resultados possam ser apresentados no final de 2010.

«Contamos com o apoio da Direcção Geral de Energia e Geologia e da Direcção Geral das Actividades Económicas, pelo que esperamos conseguir financiamento para desenvolver este projecto», disse o responsável, à margem de uma iniciativa, que decorreu hoje em Lisboa, com vista a divulgar os tópicos do concurso para financiamento de projectos na área das pilhas de combustível e hidrogénio, no âmbito do 7º Programa Quadro.

O projecto do roadmap deverá necessitar de um orçamento de 200 a 300 mil euros, disse Campos Rodrigues, e será desenvolvido pela AP2H2, Laboratório Nacional de Energia e Geologia e pelo Instituto de Engenharia Mecânica, pólo do Instituto Superior Técnico.

Tânia Nascimento/AmbienteOnline

terça-feira, 21 de julho de 2009

Gronelândia lança projecto de armazenamento de energias renováveis com hidrogénio

A empresa Nukissiorfii lançou o projecto H2KT, que vai criar uma unidade de demonstração de hidrogénio e células de combustível para armazenamento de energias renováveis, em Nuuk, capital da Gronelândia.

O projecto H2KT pretende investigar o potencial do uso do hidrogénio e das células de combustível no armazenamento de energia na Gronelândia. O excesso da electricidade produzida através da fonte hídrica será utilizada para a produção electrolítica de hidrogénio, que será armazenado. Nos períodos de maior pico de consumo, normalmente no Inverno, o hidrogénio armazenado será convertido em electricidade e calor, através das células de combustível.

Além do sistema de electrolítico (19.4 Nm3/hour, max.) e de células de combustível (20 kW), a unidades incluirá, ainda, um sistema de compressão e distribuição, permitindo o armazenamento do hidrogénio sob pressão em contentores de fácil distribuição.

Cerca de metade da energia produzida hoje pela empresa é proveniente da hídrica, sendo que a outra metade resulta a importação de petróleo. As pequenas cidades e vilas são as grandes dependentes desta última forma de produção de energia, uma vez que não têm condições para a utilização de energia hídrica ou de outras fontes de energia renovável em grande escala. Por outro lado, as grandes cidades deste país ainda utiliza o petróleo como reserva de abastecimento de energia.

Ora, vários estudos elaborados demonstraram que a Gronelândia tem um potencial teórico de energia hídrica suficiente para abastecer 70 por cento da Europa com electricidade. No entanto, o armazenamento é fundamental para equilibrar as flutuações sasonais no consumo de energia e para assegurar a distribuição em cidades sem potencial de produção de energias renováveis.

domingo, 19 de julho de 2009

Brasil com primeiro autocarro a hidrogénio em São Paulo

A cidade de São Paulo, no Brasil, adquiriu o primeiro autocarro movido a hidrogénio do país e da América Latina. Após quase três anos de discussão sobre o assunto, o veículo começou a circular este mês. Com 12 metros de comprimento e capacidade para 63 pessoas (incluindo motorista), o novo autocarro faz o trajecto entre o Terminal São Mateus (zona leste) e o Jabaquara (zona sul).

Até ao final deste mês, o veículo estará em fase de testes, segundo informação da Empresa Metropolitana de Transportes Urbanos (EMTU), pelo que não haverá transporte de passageiros. Todos os dias, o autocarro "ambientalmente correcto" partirá do mesmo ponto do que um veículo similar movido a diesel e transportará, em peso, a mesma quantidade. Findo este período, a empresa vai produzir um relatório "comparativo de desempenho", após o qual será decidida a sua utilização para o transporte de pessoas.

O Projeto Ônibus Brasileiro a Hidrogênio foi desenvolvido pelo Ministério de Minas e Energia e pela EMTU, em parceria com três entidades. O custo total para a elaboração foi de cerca de 31 milhões de reais. Até o fim de 2010 prevê-se que estejam em funcionamento quatro autocarros a hidrogénio, circulando a uma velocidade média superior a 25 km/h.

sexta-feira, 17 de julho de 2009

AP2H2 prepara sessão de divulgação da 2ª call da FCH-JU

A AP2H2, em colaboração com o Gabinete de Promoção do 7º programa Quadro (GPPQ), realiza um evento de divulgação dos tópicos a concurso no âmbito da 2ª call lançada pela FCH-JU (Empresa Comum em Pilhas de Combustível e Hidrogénio). O evento tem lugar no próximo dia 22 de Julho 2009, entre as 14.30h e as 16.30h, no espaço da AP2H2, sito no LNEG (ex-INETI), Paço do Lumiar, Lisboa.

A ideia desta iniciativa é estimular uma participação de sucesso por parte da indústria e entidades de investigação/universidades nacionais nestes concursos. Os concursos da FCH-JU, uma parceria Público-Privada entre a Comissão Europeia e a Indústria europeia do sector, respeitam a financiamento de projectos na área das pilhas de combustível e hidrogénio, com um orçamento de 70,3 milhões de euros para actividades de investigação e demonstração.

Os oradores previstos são José Campos Rodrigues, presidente da AP2H2, Teresa Bertrand, do Gabinete de Promoção do 7º Programa-Quadro de I&DT, e Carmem Rangel, Vice-presidente da AP2H2 e investigadora do INETI, estando previsto ainda um período de debate. Todos os interessados em participar deverão fazer a sua inscrição solicitando uma ficha de inscrição para info@ap2h2.pt

quarta-feira, 15 de julho de 2009

Energy -- It Just Doesn't Add Up *

I'm close to turning 50 years old and I'm having Energy déjà vu. Over the winter, fears of oil shortages put prices through the roof and energy production is being blamed for the climatic changes around the world. Chicken Little keeps telling us the sky is falling, yet forty years have gone by and the sky is still blue. Another thing that hasn't changed is that we still don't have an energy plan. How can we not have a strategy in place to quell the fear and stop the pain?

For those who don’t remember, in the late 1960’s and early 1970’s it was predicted that oil wouldn’t last until the end of the 20th Century, and that CO2 emissions were going to put us into the next ice age. Yes, you heard me right. See, we were in a climatic cooling cycle, so the colder winters gave rise to the pseudo scientific appraisal that the polar caps would expand and cover most of North America if we didn’t control our pollution. Funny, how so many scientists abandoned that research in order to capture grants for the more popular “Global Warming” hypothesis. Let’s not forget all of the warnings to turn off lights when you leave a room and to keep your thermostats at 68˚ or below in the winter. My question is; “Why is it always about the consumer?”

The Good, the Bad, and the Ugly

Don’t get me wrong, some good came out of the hysterical outcry of the 1970’s to clean up our planet. With the horrific examples of pollution gone wild, like the Love Canal chemical dumping and Lake Erie catching on fire, it became easy for people to step back and realize something needed to be done.

The youth of the 1970’s embraced the idea of a cleaner America, and it has led us to cleaner water, cleaner air and cleaner streets than any time in our country’s industrialized history.

Moving to the “bad”, political leaders and corporations have been taking advantage of our desire to do the “right thing” ever since. We have been manipulated. Much of what we’ve been told about the risks of using and producing energy are half-truths and some are outright lies. It’s all about money.

Recently, we’ve been regulated into using mercury laden fluorescent lights, even though mercury unquestionably has a negative impact on the environment. Why are we focusing on the consumer, instead of focusing on changing regulations on production that would allow for massive improvement in power plant efficiencies? We are told to reduce our consumption of electricity, but wouldn’t it make more sense for us to produce our own power to create a net savings?

Here are some truths behind the ugly lies: 1) the greatest contributor to CO2 emissions is farm animals, not cars or power plants; 2) only 5% of nuclear waste is used nuclear material, while the rest is protective clothing, tools, and parts; 3) only one third of the energy put into a power plant comes out as electricity, the rest is wasted; 4) 5%-10% of the electricity produced is lost on the way to the consumer; 5) our electricity demand will double by 2030.

Common Sense

There is one problem that needs to be solved; “How do we responsibly produce enough electricity to satisfy a technologically advancing society?” Believe it or not, the answer is simpler than you might think.

First, we need to change the regulations that have the power industry hamstrung. Currently, utilities have their rates set to earn a revenue stream that provides them with a constant 10% - 13% rate of return based on operating costs. Increases or decreases of the operating costs of electricity production are passed directly through to the consumers. The idea behind this model was to prevent utilities from charging monopoly rates for their commodity.

The dilemma is that any revenue created in an attempt to make a plant more energy efficient or productive would have to go 100% to the customers. If the plant developed a system for recovering heat, normally lost during production, and distributed it as a very low cost way for local homeowners to heat their homes, the utility stockholders couldn’t benefit one cent. Or, what if energy production could be made more efficient through replacing a more expensive cooling tower with new less expensive technology? Again, this would cost the stockholders by forcing them to incur the capital expenditure, but since their operating cost would go down it would negatively impact their revenue and in turn their total return. This regulatory process puts a huge roadblock in the way of investing in power plant efficiencies and actually supports the building of expensive, inefficient plants.

Second, it is time we ignore the self serving and erroneous cries that nuclear power is dangerous. Not only could we produce more clean power, but it would provide an economic stimulus by providing jobs for half a million people over for the next 20 years. It’s also time to provide a power grid that is national and not just regional. We need to be able to send wind power from the plains of the Midwest to Chicago, Denver, Dallas and St. Louis. Until we have a high voltage, intelligent, power grid, we’ll be at risk of bumping our heads on the ever-increasing electrical needs of Americans.

Third, and finally, we need to do some out of the box thinking. We have received our power from the “Power Company” our entire lives. This has blinded us from the obvious. No matter how many power plants we build, and how sophisticated our grid becomes, transporting electricity is a very inefficient and costly methodology for bringing power into the home.

We need to focus our attention on providing micro-power technology that will allow all individual homes the ability to cost effectively utilize a combination of solar, wind and natural gas to make each home energy self-sufficient. Imagine your home with a set of 24” fan blades and thin film solar panels installed on your roof. This passive energy would be supplemented with a natural gas furnace and generator, which could not only heat your home, but also provide it with electricity. This combination would provide uninterrupted power that could potentially cost 20% to 30% less, while providing an alternate solution to the near impossible task of doubling our national electrical output by 2030. Now that’s a legacy this generation could be proud to leave behind.

*by Brian Boeheim, author of the new book Political Common Sense for America. He has trained and presented to audiences on four continents, and worked with Fortune 100 Executives to develop and implement strategic plans that have saved their companies millions of dollars. Boeheim has worked as a consultant to Cisco Systems’ Department of Defense and Global Government sales teams, and co-wrote a U.S. Customs Guide for identifying counterfeit technology. Additionally, Boeheim is a 2nd degree black belt in Kempo, an avid golfer and has worked with children with learning disabilities. He currently resides in Florida.

terça-feira, 14 de julho de 2009

JTI lança segunda call de 140 milhões de euros

A Fuel Cells and Hydrogen Joint Technology Initiative (JTI) lançou um novo concurso (call), para o qual estão alocados 140 milhões de euros. A iniciativa visa antecipar em cerca de dois a cinco anos a entrada no mercado das células de combustível e das tecnologias energéticas do hidrogénio.

Várias equipas de investigadores deverão estudar as mais variadas aplicações detas tecnologias, desde a utilização em veículos automóveis a grandes fábricas, bem como a toda cadeia de abastecimento desde a produção de hidrogénio à demonstração do potencial existente em todo o mercado. A investigação deverá ainda encorajar a utilização de hidrogénio como combustível em autocarros e veículos movidos a células de combustível. A ideia é ajudar ao desenvolvimento do armazenamento do hidrogénio e melhorar o tempo de vida útil das células de combustível, a sua performance e custo/eficiência no sentido de poderem vir a ser utilizadas em computadores, por exemplo.

Este é o segundo concurso lançado pela iniciativa público-privada, cujo investimento global está orçado em cerca de mil milhões de euros até 2014. O Comissário Europeu da Ciência e Investigação, Janez Potočnik, acredita que: «este novo passo vem cimentar o comprometimento da Comissão Europeia e da indústria europeia em desenvolver tecnologias limpas e colocar-se na linha da frente das tecnologias verdes.

Este investimento é uma garantia da competitividade europeia e do crescimento futuro». O concurso está parcelado em 29 temas, sendo que as candidaturas podem ser apresentadas até Outubro de 2009. A selecção dos projectos será anunciada em Março do próximo ano.

quarta-feira, 8 de julho de 2009

Hidrogénio pode ser produzido a partir de urina humana

Uma investigadora da Universidade do Ohio, EUA, Gerardine Botte, descobriu uma forma de extrair o hidrogénio da urina humana, quer seja real quer seja ureia sintéctica.

O processo permite a utilização de menos energia do que a tradicional extracçao do hidrogénio feito a partir da água. Isto porque para decompor a ureia neste elemento só é necessário uma tensão de 0,37 volts enquanto que com a água é preciso algo em torno de 1,23 volts.

Tratando-se do resíduo mais abundante no mundo, a falta de matéria-prima não é um problema e, de acordo com Gerardine Botte, a tecnologia pode rápida e facilmente progredir como uma forma de produzir hidrogénio e ajudar a limpar estações de tratamento de águas residuais.

terça-feira, 7 de julho de 2009

Catalyx Nanotech produz hidrogénio a partir de gás de aterro encerrado

A Catalyx Nanotech anunciou que conseguiu obter 0,5 kg de nanofibras de plaquetas de grafite de grande qualidade, bem como 2 litros de hidrogénio «verde» a partir dos gases libertados por um aterro encerrados na Califórnia, EUA.

Anteriormente, a empresa privada utilizou gás natural numa unidade do Canadá para obter estes produtos, no entanto, a Catalyx pretende obter créditos ambientais ao utilizar o gás provenientes dos aterros neste processo, apesar dos custos serem maiores. Entre os benefícios da utilização dos gases provenientes no aterro está a eliminação dos custos extras decorrentes da separação de nanofibras de subprodutos como carbono amórfico e fuligem.

A empresa garante que o seu processo de extracção de hidrogénio prova que o hidrogénio pode ser produzido localmente, a preços competitivos, ao mesmo tempo que reduz a pegada carbónica da produção de hidrogénio.

Estudantes da Turquia querem fazer 1000 km com um litro de hidrogénio

Depois do terceiro lugar obtido na recente prova do Shell Eco Marathon, a equipa de estudantes da Universidade de Sakarya, na Turquia, que contruiu o veículo designado Sahimo, espera agora obter um resultado ainda melhor no Global Green Challenge, que terá lugar em Outubro, na Austrália.

O veículo consegiu chegar ais 568 quilómetros com apenas um litro de hidrogénio, na Shell Eco Marathon, mas na próxima prova quer alcançar os 1000 km com o mesmo hidrogénio. A performance do Sahimo deve-se sobretudo devido ao seu peso, extremamente leve. De acordo com informação da equipa de estudantes, o veículo pesa, ao todo, 1,1 quilogramas.

O veículo está orçado em cerca de 170 mil dólares, valor que deverá crescer face às alterações necessárias para chegar a quase o dobro da marca já alcançada.

sexta-feira, 3 de julho de 2009

Veleiro a hidrogénio navegará como laboratório ambiental

O primeiro veleiro a dispensar totalmente os combustíveis à base de petróleo tem a designação de Zero CO2 e é movido a hidrogénio. O veleiro será um laboratório flutuante, uma plataforma científica para estudar a poluição no Mar Mediterrâneo. O projecto, organizado pela Universidade Joseph Fourier, de França, deverá fazer sua estreia em Março de 2010.

Além das velas, o Zero CO2 possui um motor eléctrico, cuja energia é gerada por um conjunto de células a combustível alimentadas por hidrogénio. O único resíduo libertado é, assim, água pura. O barco tem 12 metros de comprimento e sua primeira missão será colectar dados científicos sobre a poluição marinha causada pela acção do homem. Esta primeira missão está prevista para durar 10 meses.
A equipe de cientistas a bordo do Zero CO2 também estudará a viabilidade da produção de "hidrogénio verde" por meio da instalação de painéis solares e turbinas de vento nos telhados das construções das regiões costeiras.

O veleiro será ainda utilizado para o teste de novas tecnologias para a geração limpa de energia em embarcações. A energia necessária para alimentar os equipamentos será gerada por painéis solares, cataventos e até por uma espécie de hélice que aproveita o deslocamento da água do mar enquanto o barco navega. Isto tornará o veleiro totalmente auto-suficiente em termos de energia.

O laboratório a bordo do Zero CO2 será equipado com instrumentos capazes de analisar dados recolhidos do ar, da água e dos sedimentos marinhos. Os investigadores estão sobretudo interessados em verificar os efeitos da poluição marinha causada pelos combustíveis à base de petróleo.A imagem apresentada é de um protótipo montado a partir de um barco com as mesmas dimensões do veleiro a hidrogénio, pois o Zero CO2 verdadeiro somente estará pronto no final deste ano, quando será apresentado durante o Paris Boat Show, de 5 a 13 de Dezembro. Os primeiros testes com o novo veleiro a hidrogénio serão feitos em Janeiro e Fevereiro de 2010, quando serão avaliados o funcionamento tanto dos equipamentos de geração de energia quanto dos equipamentos do laboratório científico. A primeira viagem, com o início da missão científica do Zero CO2, deverá começar em Março de 2010.

quinta-feira, 2 de julho de 2009

Sinking Finances Throw Iceland's 'Hydrogen-Based Economy' Into the Freezer *

The financial crisis that brought Iceland to the brink of bankruptcy has postponed this volcanic island's ambitious dream of ditching fossil fuels and transforming itself into the world's first hydrogen-based economy.

Proponents of a government-sanctioned scheme to derive hydrogen from water and use it to power all ground transportation as well as Iceland's large fishing fleet admit that their plans have been set back at least 10 years and may have to be altered to allow for electric cars.

Ten years ago, Iceland started experimenting with hydrogen applications in transportation. Three city buses ran solely on hydrogen in Reykjavik for three years. As many as 16 passenger vehicles ran on hydrogen in the city. Twelve remain in operation today, including some that tourists can rent at the local Hertz office and refuel at a Shell gasoline station that has been modified to also dispense hydrogen.

But after a promising start, Iceland's hydrogen experiment has slowed to a crawl.

"We would like to have a larger hydrogen car fleet in the next 12 months, but it's a question of cost. It depends on car manufacturers," said Jon Bjorn Skulason, general manager of Icelandic New Energy, a joint venture of Daimler, Shell, Norsk Hydro, Iceland National Power Co., Reykjavik Energy and the University of Iceland.

"We're following the lead of the car manufacturers. We are a testing ground, but it's not entirely up to us. All the manufacturers are looking at electromobility and we see strong activity at car companies in Germany and Japan. U.S. companies have been a bit distracted by the problems at GM and Chrysler."

Iceland had hoped to complete its switch from fossil fuels to hydrogen by 2040, but now that target has been moved by 10 years.

"In the past years, teams from all the big car manufacturing companies visited us and said they intended to market fuel cell-powered hydrogen cars shortly after 2010," said Bragi Arnason, a professor of chemistry at the University of Iceland in Reykjavik. "Of course, because of the current world crisis, there will be a delay."

The long quest of 'Professor Hydrogen'
Arnason, 74, is nicknamed "Professor Hydrogen" because he has dedicated his life to his dream of powering Iceland with hydrogen. In 1976, Arnason realized that despite abundant renewable energy sources, Iceland was importing more than 40 percent of the energy it consumed as fossil fuel. He began looking for a replacement in synthetic gasoline, methanol and ammonia, finally settling on hydrogen because it was cheaper and easier to produce.

In fact, Iceland has been producing hydrogen on a large scale from water by electrolysis for 50 years, making 2,000 tons per year for fertilizers. To power the country's whole transportation and fishing fleet would require 80,000 to 90,000 tons of hydrogen per year, Skulason said. It would have the added benefit of cutting Iceland's carbon dioxide emissions by 66 percent.

Under the Kyoto Protocol, Iceland is allowed to increase its emissions by 10 percent from 1990 levels. But the country's power-intensive aluminum industry, which is expected to expand, will force it to exceed that goal. Since indoor heating (as well as heating of the streets and sidewalks of Reykjavik, which stay ice-free in the winter) is already geothermal and all electricity production is either hydro or geothermal, the country's best shot to reduce its carbon emissions is curbing fossil fuel usage in fishing and transportation.

Taken together, these sectors make up only 28 percent of Iceland's energy consumption -- about the same as industrial activity -- compared to 40 percent for space heating.

In 1998, the government signed an official document proclaiming its desire to transform Iceland into a hydrogen-powered society. Since Iceland has transportation systems and standards similar to those of all other developed nations, hydrogen supporters here hoped that success in this tiny country under severe weather conditions could be replicated elsewhere in a more forgiving climate.

Financial bummer for one of the world's 'happiest' countries
Once ranked the fourth-happiest country in the world, Icelanders thought they could afford such lofty ideals. Then their three main banks collapsed last fall, taking the economy down with them and pushing unemployment from 1 percent to 9 percent today in the North Atlantic island of just 300,000 inhabitants. The Icelandic crown lost half its value, and household consumption is expected to shrink by a quarter, as inflation hit a peak of nearly 19 percent in January.

The three original hydrogen buses did not lead to a wholesale transformation of the Reykjavik fleet. Instead, now all buses run on conventional fuels. "The bus project has now been terminated; we are waiting for the next generation to be built," Arnason said.

Storing hydrogen in a small vehicle is tricky, so buses were prime candidates for the Icelandic experiment. Enough hydrogen can be stored on board as pressurized gas to operate the buses throughout the day, refueling in less than seven minutes.

For private cars, the storage problem makes it difficult to engineer a car that will travel a long distance without refueling. The Icelanders have experimented with Ford, Mercedes and modified Toyota Prius hydrogen cars.

The cold winter caused trouble for the Toyotas, which did not heat rapidly upon starting and had water leaking into the engine oil. Two engine heaters were installed to fix the problem, but test drivers complained about the limited range the Prius had on hydrogen -- only 100 miles.

The Mercedes fuel cell A-Class exceeded all expectations and performed well in Iceland's harsh climate, according to Icelandic New Energy. Two A-Class vehicles have been driven thousands of miles without needing any service. They proved to have a range of 225 miles at optimum hydrogen pressure.

Fuel cell-powered Ford Focuses and Explorers were also tested, the former with a range of 150-200 miles per tank and the latter with a range of 350 miles -- the longest-range hydrogen vehicle to date. Skulason himself drives one of the Explorers to work every day. "It would be very difficult to go back to a gasoline car if I ever have to," he said.

A whale-watching boat gets hydrogen fuel, but not the fleet
If everyone drove a car like Skulason's, Iceland would only need 15 hydrogen fueling stations, Arnason said. "This shows how easy it is to start introducing the hydrogen economy in Iceland if we could purchase hydrogen-powered cars. If our vision becomes reality, there would be no more heavy trucks on the roads transporting fossil fuel all around the country," he said, acknowledging that he likely won't be around to see that day.

Discovered in the eighth century by Irish monks, Iceland was first colonized by Norway, then taken over by Denmark in the 14th century. It became fully independent in 1944, although Denmark's influence can still be felt in Reykjavik and many Icelanders still can speak Danish as a second language.

The fishing industry has been Iceland's traditional economic base. Almost all of the fish caught by the country's 3,000 trawlers is exported, accounting for 37 percent of Iceland's overall exports last year, second only to the aluminum industry, which represented 52 percent of exports, according to Statistics Iceland.

Iceland's fishing boats are sometimes at sea for up to six weeks and need to store large amounts of fuel. Pressurized hydrogen won't work here, while liquid hydrogen would be prohibitively expensive. According to Arnason, the only near-term solution is to store hydrogen bound in methanol.

"Technically, it is possible to produce sufficient methanol in Iceland to power the entire fishing fleet by combining electrolytically produced hydrogen and carbon oxides currently emitted from the metals industry," Arnason said. "This could reduce the greenhouse gas emission from the fishing sector to about 45 percent of the present level."

But for now, the only vessel running on hydrogen is a whale-watching boat, the Elding. Its main engine still uses oil, but when the boat shuts it down for tourists to observe the whales without disturbing them, the auxiliary engine runs on hydrogen to produce the electricity needed to keep other systems running.

Electric cars may now come first, despite fuel cell potential
Many tourists know Iceland especially for the warm, sulfurous waters of the Blue Lagoon near the airport. Most don't know, though, that the Blue Lagoon also fuels a power plant, as do numerous hot springs dotting this island.

On paper, at least, Iceland is still paradise for renewable energy enthusiasts. It has a geothermal potential of 20 trillion watt-hours (TWh) per year, of which only 1 percent has been harnessed, and a hydro energy potential of 30 TWh per year, of which only 15 percent has been harnessed.

Despite recent setbacks, Skulason and Arnason dream of a day when the huge amounts of renewable electricity available to Icelanders will be used to produce hydrogen that will propel their way of life into the future.

"The goal is to have a fully hydrogen-powered economy by 2050, including the marine fleet," Skulason said. "The vehicle fleet could be done much faster. We only have 200,000 cars in the country, so it's easy to change them, but it depends on cost and availability."

Skulason admitted that some Icelanders may choose electric cars over hydrogen cars.

"Hydrogen won't be the only fuel; part of the fleet will be electric. But hydrogen will fit in the portfolio," he said. "Electric cars don't have the range yet. Plus, we need four-wheel drive cars in Iceland because we have some pretty bad winters. It's not something electric vehicles can fulfill 100 percent. I'm not sure battery technology will go beyond 150 miles."

Another issue is the charging time of up to eight hours now necessary for batteries used in electric cars. "Faster charging could be a possibility in the future. We are open-minded, but we don't think a battery-operated electrical engine would be good for the fishing fleet."

*Publicado a 1 de Julho no The New York Times